FlowJo Webinars: Machine Learning in FlowJo v10

Christian R. Aguilera-Sandoval, PhD Field Applications Scientist, Informatics Crbech.flowjo@bd.com

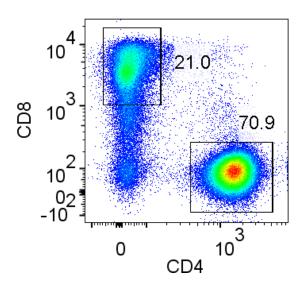
Jack Panopoulos, PhD
Field Applications Scientist, Informatics
Jack.Panopoulos@bd.com

Outline

- Gating practices in flow cytometry
 - Manual Hierarchical gating
 - High-dimensionality reduction techniques and clustering algorithms
- Intro to Machine Learning
 - Supervised
 - Unsupervised
- Description of Dimredux techniques and clustering algorithms
- Comparison of dimredux techniques
- Comparison of clustering algorithms
- Which tool should I use and when?
- Live Demo of dimreduc techniques and clustering algorithms
- Coming Soon: Preview of unreleased plug-in
 - Cluster quality check

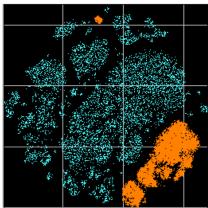
Current Gating Practices in Flow Cytometry

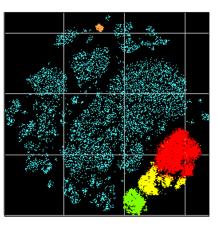
Manual hierarchical gating



High-dimensionality reduction and clustering

CD19+ and CD20+ B-Cells





Subset Name	Count
Phenograph_96C5_29	3519
Phenograph_96C5_16	9695
Phenograph_96C5_6	485
Phenograph_96C5_2	2986
Ungated	113864

Manual Hierarchical Gating

- Manual hierarchical gating
 - Traditional gating using parent and child gates
 - Visual inspection of bivariate plots to identify cell populations
 - Problematic for high-dimensional settings
 - Subjectivity
 - Operator bias
 - Difficulty of identification for rare populations
 - Reproducibility
 - Populations could be overseen/ignored due to high parameter use

High-dimensionality Reduction and Clustering

Pros

- Efficient and time saving for high-dimensionality panels
- Uncover multidimensional structures not seen in bivariate projections
- Uses machine learning as the tool to identify cell phenotypes reducing bias, user error yet increasing reproducibility

• Cons:

- Technical expertise
- Advanced computer hardware
- Machine learning methods
 - Supervised
 - Unsupervised

Machine Learning - Supervised

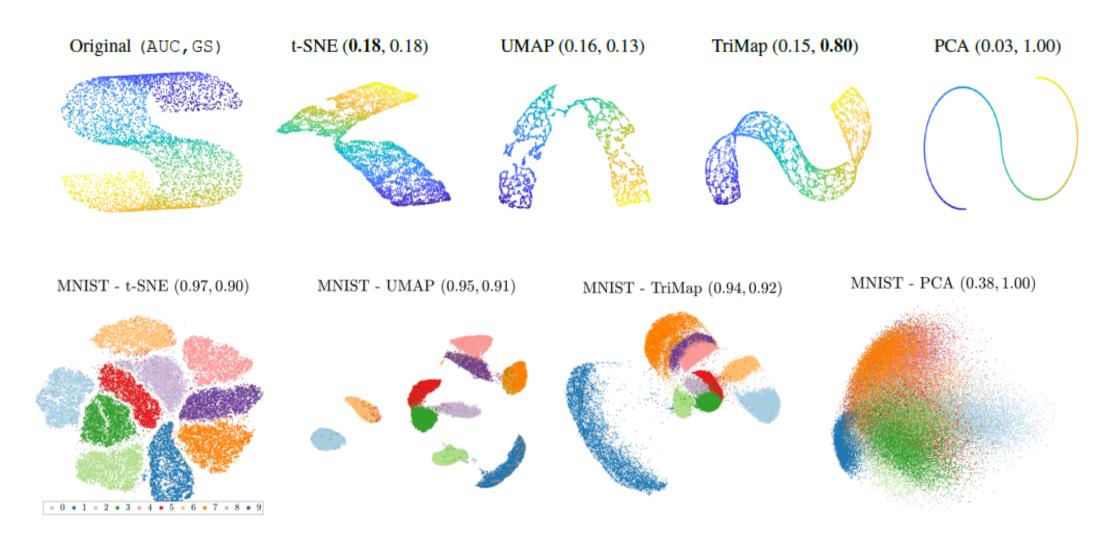
Machine Learning - Unsupervised

FlowJo's Machine Learning's Tools To Be Discussed Today

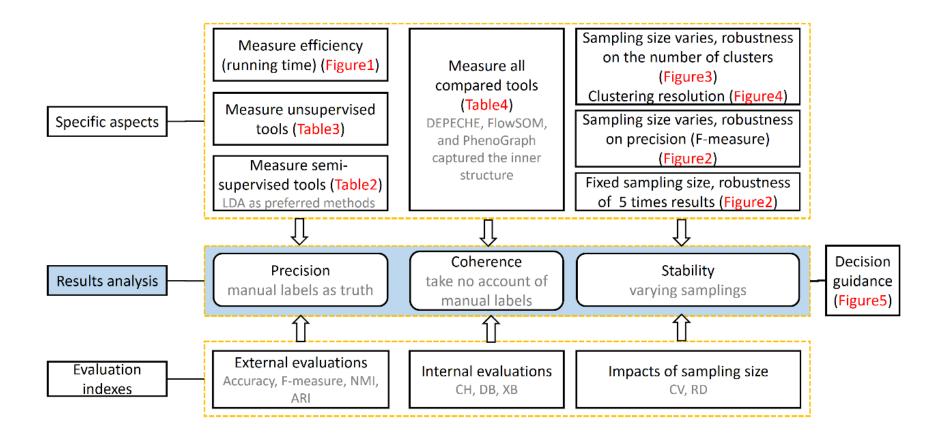
Method	Purpose	
tSNE ¹	DimRex	Method to visualize general structure of nonlinear data and assess a sample's heterogeneity through high resolution of local neighborhood structure
UMAP ²	DimRex	Method to quickly visualize the local and global structure of nonlinear data as a trade-off to resolution of local neighborhood structure and fidelity of global structure
TriMAP ³	DimRex	Method to visualize with high fidelity the global structure of nonlinear data
FlowSOM ⁴	Clustering	Self-organizing maps, followed by hierarchical consensus meta-clustering to merge clusters
Xshift ⁵	Clustering	Weighted k-nearest neighbor density estimation, detection of density centroids, cells linked by centroid via density-ascending paths
Phenograph ⁶	Clustering	Detection of k-nearest of neighbors of each cell, followed by partitioning of the map into clusters based on phenotype

¹= Maaten et al, 2008 ²= McInnes et al 2018 ³= Amid et al, 2019 ⁴= Van Gassen, 2015 ⁵=Samusik et al, 2016 ⁶= Levine et al, 2015

A Comparison of DimRex Algorithms



Study Flowchart



LDA Is Superior to ACDC In Precision*

Table 2 Summary of external evaluations for semi-supervised methods

Datasets	Methods	External evaluations	External evaluations			
		Accuracy	F-measure	NMI	ARI	
Cell Cycle	ACDC	0.8342 ± 0.0071	0.8466 ± 0.0093	0.4325 ± 0.0212	0.5579 ± 0.0129	
	LDA	0.9095 ± 0.0006	0.9110 ± 0.0005	0.6189 ± 0.0032	0.7225 ± 0.0021	
Colon	ACDC	0.7439 ± 0.0026	0.7874 ± 0.0076	0.5705 ± 0.0088	0.5952 ± 0.0041	
	LDA	0.8576 ± 0.0011	0.8587 ± 0.0012	0.7410 ± 0.0012	0.7626 ± 0.0017	
Levine13dim	ACDC	0.9010 ± 0.0029	0.9275 ± 0.0026	0.8635 ± 0.0041	0.9011 ± 0.0052	
	LDA	0.9582 ± 0.0005	0.9586 ± 0.0005	0.9275 ± 0.0008	0.9539 ± 0.0007	
Levine32dim	ACDC	0.9943 ± 0.0006	0.9939 ± 0.0007	0.9380 ± 0.0052	0.9791 ± 0.0020	
	LDA	0.9809 ± 0.0003	0.9807 ± 0.0004	0.9595 ± 0.0006	0.9830 ± 0.0002	
Muscle	ACDC	0.8787 ± 0.0101	0.8784 ± 0.0089	0.6750 ± 0.0168	0.7593 ± 0.0190	
	LDA	0.9240 ± 0.0011	0.9238 ± 0.0011	0.7606 ± 0.0031	0.8295 ± 0.0031	
Samusik01	ACDC	0.9682 ± 0.0027	0.9731 ± 0.0019	0.9347 ± 0.0047	0.9616 ± 0.0021	
	LDA	0.9757 ± 0.0002	0.9759 ± 0.0002	0.9482 ± 0.0004	0.9735 ± 0.0005	

Data shown as mean ± standard deviation

Unsupervised Methods Outperform Semisupervised Methods In Coherence

Table 4 Summary of internal evaluations for each compared methods

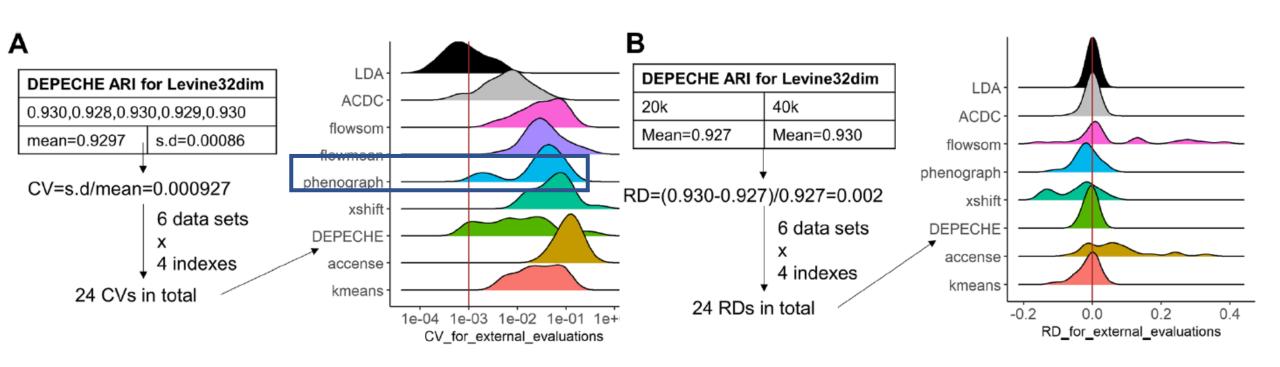
Datasets	Methods	Internal evaluations			
		СН	DB	XB	
_evine13dim	Accense	3.4230 ± 0.0932	1.8832 ± 0.1408	1.2321 ± 0.0278	
	PhenoGraph	4.0739 ± 0.0176	1.4645 ± 0.0346	1.3972 ± 0.1349	
	Xshift	3.5106 ± 0.0289	2.4284 ± 0.0443	1.7868 ± 0.0476	
	kmeans	3.8508 ± 0.0150	2.1550 ± 0.0546	1.6213 ± 0.1471	
	flowMeans	4.0475 ± 0.0194	1.5030 ± 0.0849	1.4234 ± 0.1182	
	FlowSOM	3.8486 ± 0.0071	1.7564 ± 0.0615	1.5043 ± 0.1531	
	DEPECHE	4.2783 ± 0.0174	1.1677 ± 0.0342	1.3562 ± 0.0392	
	ACDC	3.9638 ± 0.0110	1.4916 ± 0.0370	1.3109 ± 0.0948	
	LDA	3.8288 ± 0.0106	2.0046 ± 0.0493	1.3828 ± 0.1167	
_evine32dim	Accense	3.4621 ± 0.0901	2.3414 ± 0.0925	0.7891 ± 0.0950	
	PhenoGraph	3.7401 ± 0.0081	1.8293 ± 0.0810	1.0009 ± 0.0479	
	Xshift	3.6669 ± 0.0102	2.2576 ± 0.1324	0.8295 ± 0.1382	
	kmeans	3.8761 ± 0.0166	2.0587 ± 0.0386	0.9972 ± 0.0441	
	flowMeans	3.8546 ± 0.0393	1.6975 ± 0.2199	0.7985 ± 0.0709	
	FlowSOM	3.8244 ± 0.0285	1.5974 ± 0.0863	0.8366 ± 0.0792	
	DEPECHE	4.1480 ± 0.0009	1.4727 ± 0.0023	0.7575 ± 0.0351	
	ACDC	3.6169 ± 0.0046	1.3974 ± 0.0049	0.7693 ± 0.1310	
	LDA	3.8297 ± 0.0007	1.7011 ± 0.0099	0.7155 ± 0.0139	

Lie et al 2019

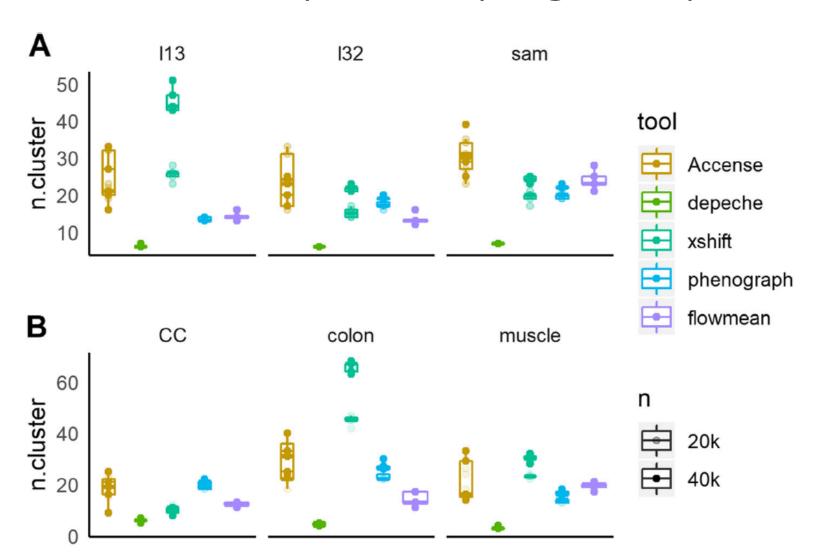
Best Unsupervised Clustering Methods for Inner Structure

- FlowSOM
- Phenograph
- DEPECHE

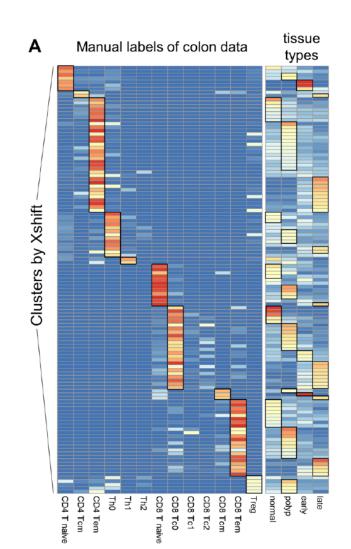
Phenograph and LDA Are The Most Robust Methods With Repetitive Tests or Varying Sample Sizes

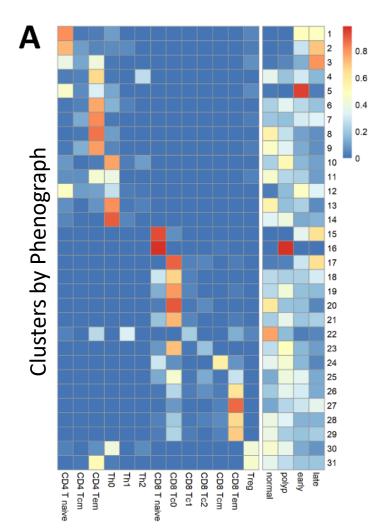


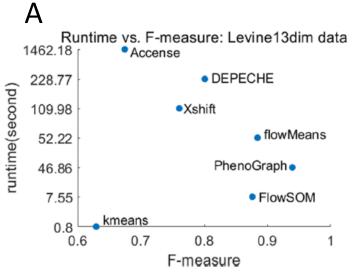
Phenograph Detects More Clusters Consistently In Varying Sample Sizes

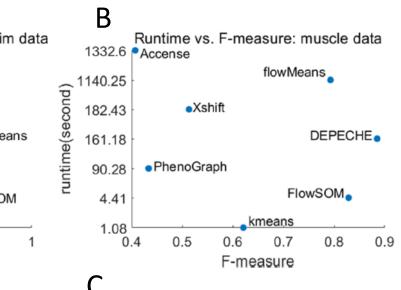


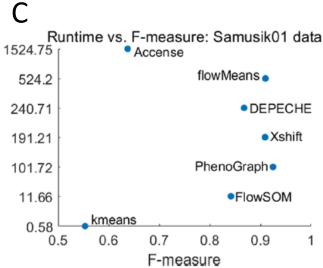
Xshift And Phenograph Best Idenfity Subsets Of Major Cell Types

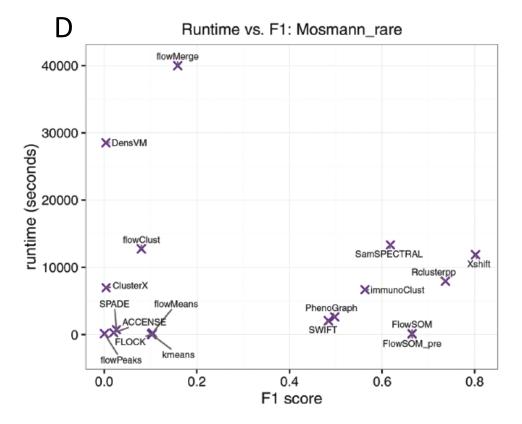












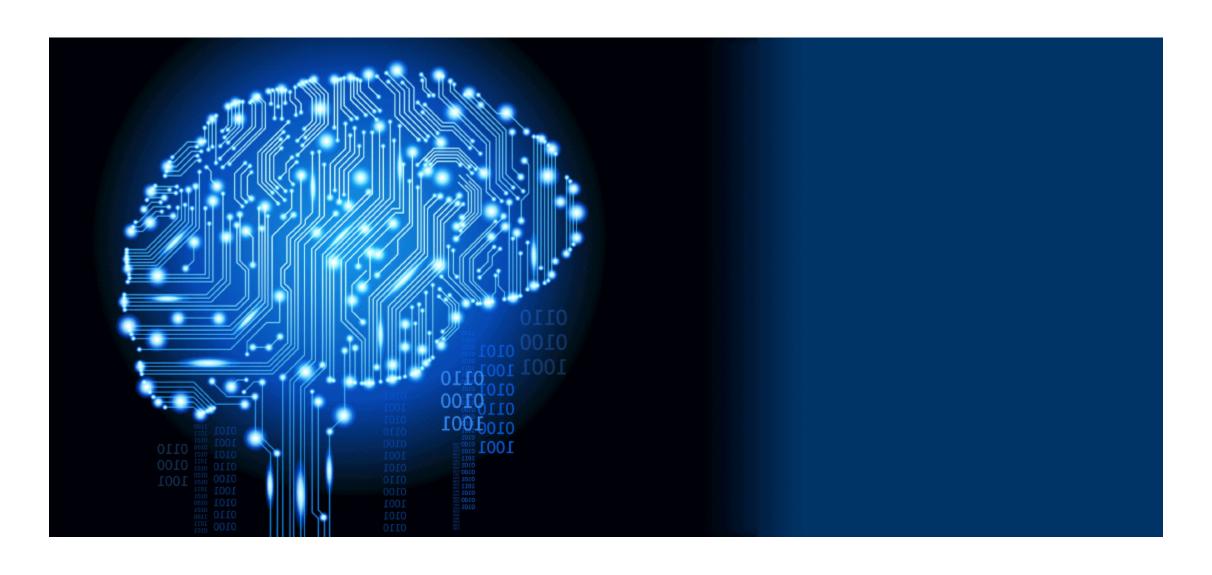
The Right Tool For The Right Job



Conclusions

- Top unsupervised tools:
 - FlowSOM and Phenograph
 - Precision
 - Coherence
 - Stability
- Top tools to detect subsets:
 - Phenograph and Xshift (using Elbow Plot Determination)
- FlowSOM best tool when dealing with very large datasets

Next: Live Demo



Thank You!!!

Christian R. Aguilera-Sandoval, PhD Crbech.flowjo@bd.com

Serena Di Cecilia, PhD
Serena.Di.Cecilia@bd.com

Jack Panopoulos, PhD
Jack.Panopoulos@bd.com

Tech Support techsupport@flowjo.com